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Abstract. Based on the structure of the energy levels of a relativistic electron moving in a 
uniform magnetic field first derived by Schneider, a more rigorous quantum theory of 
gyrotron radiation is developed. As the result, a difference-differential equation is obtained 
to describe the evolution of gyrotron radiation. This equation is of the form of the spherical 
Raman-Nath equation, well known in the quantum theory of free-electron lasers. Therefore, 
all the mathematical techniques developed for solving the spherical Raman-Nath equation 
can be used immediately to solve the problem of gyrotron radiation. 

Gyrotron radiation was first advocated by Schneider (1959) in a purely quantum 
mechanical context as the ‘stimulated emission of radiation by relativistic electrons in 
a magnetic field’ when he solved the relativistic Schrodinger equation for an electron 
in a uniform magnetic field. However, the subsequent theoretical developments have 
been carried out completely based on classical relativistic dynamics and plasma waves. 
Recently, Ho and Granatstein (1986) have adopted the viewpoint of quantum elec- 
tronics for their analytical study of the gyrotron; it is viewed as the coherent radiation 
of induced linear electric dipole moments. In this letter, we will reduce a gyrotron to 
its bare essentials and focus our attention on an individual electron as it cascades 
down the energy-level ladder and the accompanying radiation. 

We consider a relativistic electron in a static and uniform magnetic field of magni- 
tude B pointing along the z axis. It is well known that the relativistic wavefunction 
in the xy plane can be expressed in terms of the generalised Laguerre polynomials as 
(Sokolov and Ternov 1986) 

where 

eB 
2 h  

s = - ( x 2 + y ’ )  

where A is Planck’s constant, 4 is the azimuth angle, and L j - , ( s )  is the generalised 
Laguerre polynomial. The corresponding eigenenergy is 

E, = moc2[ 1 + ( 2 j  + 1) hw,/ m0c2]”* (3) 
where 
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is the cyclotron frequency. It should be noticed that the eigenenergy does not depend 
on 1. 

The binomial expansion of (3)  up to the second order of j gives 

Ej= Eo+jfio-j2he ( 5 )  
where Eo= moc2( 1 + S/2 - S2/8), w = oo( 1 - 6/2), and he = moc2S2/2 with 6 = 
hwo/moc2. Since E,, is a constant, it can be dropped from now on simply by shifting 
the energy scale. 

Consider the interaction of the electron with a radiation field. Let an arbitrary 
quantum state of the system at time t be expressed as 

where In) is the photon-number state or Fock state and the Cj,l,n(t) are slowly varying 
probability amplitudes. Let the Hamiltonian of the system be written as 

H = Ho + Hint (7)  
with 

and 

where E is the electric field of the radiation assumed to be polarised along the y axis, 
ut  and a are the creation and the annihilation operators, respectively, eo is the 
permittivity of the vacuum, and V is the quantisation volume. 

Using the properties of generalised Laguerre polynomials, we can calculate matrix 
elements of y to be as follows: 

otherwise. 

Using (7)-(  10) in the Schrodinger equation 

d 
i h p ) ) =  HI$(t)) (11) 

multiplying by (nl(j, I1 from the left and using the orthogonality properties of the 
eigenstates, we obtain 

i -  d CJ,i,n =--~j'G.i.~ -AJ( j+ l ) (n+ l )Cj+ l , i+ l ,n - l  e-2iwf 

d t  
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We now invoke the rotating-wave approximation to drop those terms with rapidly 
oscillating factors in (12) to obtain 

It is obvious that 1 is an irrelevant quantum number; so we let 

Then (13) is reduced to 

d 
dt  i - C,,,, ( t ) = - &j2 Cj,n ( t ) + A m C ,  - .n + ( t + A m  C, + I ,,, - I ( t ). 

It is also obvious that j +  n = N is an invariant in the evolution governed by (15), 
which is also required by conservation of energy. Therefore, only one index is sufficient 
to identify the probability amplitude Cj( t )  = Cj,,( t ) .  So the equation can be further 
reduced to 

d 
i - Cj( t )  = - &j*C( t )  + Adj( N - j  + 1) C,-,( t )  + Ad( j + 1)( N - j )  C,+,( t ) .  
d t  

This difference-differential equation is of the type of spherical Raman-Nath ( R N )  

equation well known in the quantum theory of free-electron lasers (Ciocci et a1 1986). 
The original R N  equation was derived to describe light diffraction by ultrasound (Raman 
and Nath 1937). The unique feature of this type of equation is the existence of a term 
proportional to j 2  which indicates the characteristics of a nonlinear problem. This is 
the very reason that the RN equation has defied any exact solution in its long history 
of existence. However, becaususe these types of equations appear in a large number 
of physical phenomena, as pointed out by Bosco and Dattoli (1983), a vast collection 
of mathematical tools have been developed to solve them (Bosco and Dattoli 1983, 
Bosco et a1 1984, Lee 1985, 1987, 1988, Ciocci et a1 1986, Carusotto 1989). Therefore, 
we can utilise this great wealth of mathematical techniques immediately to study the 
problem of gyrotron radiation quantum mechanically. 

This work was supported in part by the US Navy, Office of Naval Research, under 
Grant #N00014-89-J-1050 and in part by the US Department of Energy through the 
Lawrence Livermore National Laboratory under Subcontract #7381905. 
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